pk10开奖结果

千教网
输入关键词,搜索您要的课件,教案,试题
您的位置: 千教网 >> 高考试题下载 >>(精校版)2019年全国卷Ⅰ理数高考试题文档版(有答案)

欢迎您到“千教网”下载“(精校版)2019年全国卷Ⅰ理数高考试题文档版(有答案)”的资源,本文档是doc格式,无须注册即可下载,点击“本地下载”即可下载
(精校版)2019年全国卷Ⅰ理数高考试题文档版(有答案)
所属科目:高考试题    文件类型:doc
类别:试题、练习
上传日期:2019/6/25  
相关资源:
新高考(精校版)2019年浙江卷数学高考试题文档版(有答案)

2019年高考数学试题(13套均有解答)

(精校版)2019年北京卷理数高考试题文档版(有答案)

pk10开奖结果(精校版)2019年北京卷文数高考试题文档版(有答案)

(精校版)2019年江苏卷数学高考试题文档版(有答案)

(精校版)2019年天津卷文数高考试题文档版(有答案)

(精校版)2019年全国卷Ⅲ理数高考试题文档版(有答案)

(精校版)2019年天津卷理数高考试题文档版(有答案)

pk10开奖结果(精校版)2019年全国卷Ⅱ理数高考试题文档版(有答案)

(精校版)2019年全国卷Ⅱ理数高考试题文档版(有答案)

pk10开奖结果(精校版)2019年全国卷Ⅰ理数高考试题文档版(有答案)

(精校版)2019年全国卷Ⅰ文数高考试题文档版(有答案)

温馨提示:本站所有教学资源均是完全免费提供!内容简介下方即有下载连接!

下载步骤:直接点击即可下载

注意:1.源文件中的公式,图片,在下边的内容预览中被忽略!(文档内容预览在最下方)

    2.下载链接在下方,无需注册直接可下载!

文档内容预览:
  
绝密★启用前
2019年普通高等学校招生全国统一考试
理科数学
本试卷共4页,23小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,则=
A. B. C. D.
2.设复数z满足,z在复平面内对应的点为(x,y),则
A. B. C. D.
3.已知,则
A. B. C. D.
4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是

A.165 cm B.175 cm C.185 cm D.190 cm
5.函数f(x)=在的图像大致为
A. B.
C. D.
6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是

A. B. C. D.
7.已知非零向量a,b满足,且b,则a与b的夹角为
A. B. C. D.
8.如图是求的程序框图,图中空白框中应填入

A.A= B.A= C.A= D.A=
9.记为等差数列的前n项和.已知,则
A. B. C. D.
10.已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为
A. B. C. D.
11.关于函数有下述四个结论:
①f(x)是偶函数 ②f(x)在区间(,)单调递增
③f(x)在有4个零点 ④f(x)的最大值为2
其中所有正确结论的编号是
A.①②④ B.②④ C.①④ D.①③
12.已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,PB的中点,∠CEF=90°,则球O的体积为
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.曲线在点处的切线方程为____________.
14.记Sn为等比数列{an}的前n项和.若,则S5=____________.
15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.
16.已知双曲线C:的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若,,则C的离心率为____________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)
的内角A,B,C的对边分别为a,b,c,设.
(1)求A;
(2)若,求sinC.
18.(12分)
如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.


(1)证明:MN∥平面C1DE;
(2)求二面角A-MA1-N的正弦值.
19.(12分)
已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.
(1)若|AF|+|BF|=4,求l的方程;
(2)若,求|AB|.
20.(12分)
已知函数,为的导数.证明:
(1)在区间存在唯一极大值点;
(2)有且仅有2个零点.
21.(12分)
为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.
(1)求的分布列;
(2)若甲药、乙药在试验开始时都赋予4分,表示“甲药的累计得分为时,最终认为甲药比乙药更有效”的概率,则,,,其中,,.假设,.
(i)证明:为等比数列;
(ii)求,并根据的值解释这种试验方案的合理性.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。
22.[选修4—4:坐标系与参数方程](10分)
在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.
(1)求C和l的直角坐标方程;
(2)求C上的点到l距离的最小值.
23.[选修4—5:不等式选讲](10分)
已知a,b,c为正数,且满足abc=1.证明:
(1);
(2).


















2019年普通高等学校招生全国统一考试
理科数学?参考答案
一、选择题
1.答案:C
解答:由题意可知,,又因为,则,故选.
2.答案:C
解答:∵复数在复平面内对应的点为,∴ ,
∴,∴.
3.答案:B
解答:由对数函数的图像可知:;再有指数函数的图像可知:,,于是可得到:.
4.答案:B
解答:
方法一:
设头顶处为点,咽喉处为点,脖子下端处为点,肚脐处为点,腿根处为点,
足底处为,,,根据题意可知,故;
又,,故;
所以身高,将代入可得.
根据腿长为,头顶至脖子下端的长度为可得,;
即,,将代入可得,
所以,故选B.
方法二:
由于头顶至咽喉的长度与头顶至脖子下端的长度极为接近,故头顶至脖子下端的长度可估值为头顶至咽喉的长度;根据人体的头顶至咽喉的长度与咽喉至肚脐的长度之比是(称为黄金分割比例)可计算出咽喉至肚脐的长度约为;将人体的头顶至咽喉的长度与咽喉至肚脐的长度相加可得头顶至肚脐的长度为,头顶至肚脐的长度与肚脐至足底的长度之比是可计算出肚脐至足底的长度约为;将头顶至肚脐的长度与肚脐至足底的长度相加即可得到身高约为,与答案更为接近且身高应略小于,故选B.
5.答案:D
解答:∵,
∴为奇函数,排除A,
又,排除C,
,排除B,故选D.
6.答案:A
解答:每爻有阴阳两种情况,所以总的事件共有种,在个位置上恰有个是阳爻的情况有种,所以.
7.答案:B
解答:设与的夹角为,∵,
∴,∴,∴.
8.答案:A
解答:把选项代入模拟运行很容易得出结论.
选项A代入运算可得,满足条件,
选项B代入运算可得,不符合条件,
选项C代入运算可得,不符合条件,

选项D代入运算可得,不符合条件.
9.答案:A
解析:依题意有,可得,,.
10.答案:B
解答:由椭圆的焦点为,可知,又,,可设,则,,根据椭圆的定义可知,得,所以,,可知,
根据相似可得代入椭圆的标准方程,得,,
椭圆的方程为.
11.答案:C
解答:因为,所以是偶函数,①正确,因为,而,所以②错误,
画出函数在上的图像,很容易知道有零点,所以③错误,
结合函数图像,可知的最大值为,④正确,故答案选C.
12.答案:D
解答:设,则,
∴,
∵,,
∴,即,解得,
∴,又,
易知两两相互垂直,
故三棱锥的外接球的半径为,
∴三棱锥的外接球的体积为,故选D.
二、填空题
13.答案:
解答:∵,
∴结合导数的几何意义曲线在点处的切线方程的斜率,∴切线方程为.
14.答案:
解答:∵,,设等比数列公比为,∴,∴,∴.
15.答案:
解答:甲队要以,则甲队在前4场比赛中输一场,第5场甲获胜,由于在前4场比赛中甲有2个主场2个客场,于是分两种情况:
.
16.答案:
解答:由知是的中点,,又是的中点,所以为中位线且,所以,因此,又根据两渐近线对称,,所以,.

三、解答题
17.解:(1)由已知得,故由正弦定理得.
由余弦定理得.
因为,所以.
(2)由(1)知,由题设及正弦定理得,
即,可得.
由于,所以,故



18.解:(1)连结B1C,ME.
因为M,E分别为BB1,BC的中点,
所以ME∥B1C,且ME=B1C.
又因为N为A1D的中点,所以ND=A1D.
由题设知A1B1DC,可得B1CA1D,故MEND,
因此四边形MNDE为平行四边形,MN∥ED.
又MN平面EDC1,所以MN∥平面C1DE.
(2)由已知可得DE⊥DA.
以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz,则

,A1(2,0,4),,,,,,.
设为平面A1MA的法向量,则,
所以可取.
设为平面A1MN的法向量,则
所以可取.
于是,
所以二面角的正弦值为.
19.解:设直线.
(1)由题设得,故,由题设可得.
由,可得,则.
从而,得.
所以的方程为.
(2)由可得.
由,可得.
所以.从而,故.
代入的方程得.
故.
20.解:(1)设,则,.
当时,单调递减,而,可得在有唯一零点,
设为.
则当时,;当时,.
所以在单调递增,在单调递减,故在存在唯一极大值点,即在存在唯一极大值点.
(2)的定义域为.
(i)当时,由(1)知,在单调递增,而,所以当时,,故在单调递减,又,从而是在的唯一零点.
(ii)当时,由(1)知,在单调递增,在单调递减,而,,所以存在,使得,且当时,;当时,.故在单调递增,在单调递减.
又,,所以当时,.从而, 在没有零点.
(iii)当时,,所以在单调递减.而,,所以在有唯一零点.
(iv)当时,,所以<0,从而在没有零点.
综上,有且仅有2个零点.
21.解:X的所有可能取值为.

所以的分布列为

(2)(i)由(1)得.
因此,故,即
.
又因为,所以为公比为4,首项为的等比数列.
(ii)由(i)可得
.
由于,故,所以

表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为,此时得出错误结论的概率非常小,说明这种试验方案合理.
22.解:(1)因为,且,所以C的直角坐标方程为.
的直角坐标方程为.
(2)由(1)可设C的参数方程为(为参数,).
C上的点到的距离为.
当时,取得最小值7,故C上的点到距离的最小值为.
23.解:(1)因为,又,故有
.
所以.
(2)因为为正数且,故有



=24.
所以.
关于资源的下载性声明:千教网本身不提供任何资源的下载服务,也不会保存任何数据在服务器上。所有资源的下载,均源于互联网抓取。当该资源的原始地址失效时,您可能无法获取该资源。
关于本站 | 免责声明 | 广告联系 | 网站提交 | 网友留言 | 联系我们
pk10开奖结果_spLf9k pk10开奖结果_OSfULw pk10开奖结果_BsFecaF pk10开奖结果_wlPjtZ pk10开奖结果_pGTEd5 pk10开奖结果_MqCDJS pk10开奖结果pk10开奖结果_StKaVz pk10开奖结果_3KTvYBw pk10开奖结果_auTDzS pk10开奖结果_eYifK